3. Brownian motion. Let C(I) be the space of continuous functions on I with the sup-norm and the corresponding Borel sigma-algebra. If $W = (W_t)_{t \in I}$ is the standard Brownian motion as defined in Problem 12, it is easy to check that W is a C(I)-valued random variable. The distribution of W is called *Wiener measure*, a Borel probability measure on C(I).

Some generalities. Two C(I)-valued random variables X, Y have the same distribution if and only if they have the same finite dimensional distributions. This shows that SBM is well-defined as a C[0, 1]-valued random variable and that the properties (a),(b),(c) in Problem 13 constitute an equivalent definition of SBM. Also, to check independence of two C(I)-valued random variables X and Y, it is enough to check that $(X(t_1), \ldots, X(t_n))$ is independent of $(Y(s_1), \ldots, Y(s_m))$ for any $t_j, s_i \in I$. Advisory: In the problems below, it is better to use the defining properties of Brownian motion rather than any particular construction of it.

14 (*Regularity of Wiener measure*). For any $\varepsilon > 0$, there exists a compact set $K \subseteq C(I)$ such that $\mathbf{P}(W \in K) \ge 1 - \varepsilon$. Further, any open set of $C_0(I) = \{f \in C(I) : f(0) = 0\}$ has positive Wiener measure.

15. Let $0 = t_0 < t_1 < \ldots < t_m < 1$ and $x_1, \ldots, x_m \in \mathbb{R}$ and $x_0 = 0$. Let *W* be standard BM. For $0 \le k \le m$ define,

$$B_k(s) := \frac{W(t_k(1-s) + t_{k+1}s) - (x_k(1-s) + x_{k+1}s)}{\sqrt{t_{k+1} - t_k}}, \quad \text{for } s \in I.$$

Then, conditional on $W(t_1) = x_1, \dots, W(t_m) = x_m$, the random functions B_1, \dots, B_m are independent standard Brownian bridges.

16 (Exercise 1.9 in [MP]). If $\alpha > \frac{1}{2}$, then standard Brownian motion is nowhere Hölder- α continuous. Here Hölder- α continuity of f at a point t_0 means that $\limsup_{\substack{h\to 0\\h^{\alpha}}} \frac{|f(t_0+h)-f(t_0)|}{h^{\alpha}} < \infty$. [Remark: Observe that this proof does not work for Hölder-1/2 points].

17 (Exercise 1.12 in [MP]). In addition, for $\alpha > \frac{1}{2}$ can we say that W + f is nowhere Hölder continuous with exponent α ?

18 (*Hölder*-1/2 *points*?). We say that t_0 is a Hölder-1/2 point of f with constant C if $\limsup_{h\to 0} \frac{|f(t_0+h)-f(t_0)|}{\sqrt{h}} < C$. In this exercise, you will prove that almost surely, W has no Hölder-1/2 points with constant less than 0.1. Let $\Delta W(I) := W(b) - W(a)$ if I = [a, b].

[[]MP] will indicate the book Brownian motion by Peter Mörters and Yuval Peres.

- 1. Fix $\delta > 0$ and set \mathcal{A}_{δ} be the event that there exists $t \in I$ such that $|W(t + h) W(t)| \leq 0.1 h^{\delta}$ for all $h \in [-\delta, \delta]$. The claim follows if we show that $\mathbf{P}(\mathcal{A}_{\delta}) = 0$ for any $\delta > 0$.
- 2. Let $I_{n,k} = [k2^{-n}, (k+1)2^{-n}]$. The parent of $I_{n,k}$ is the unique I_{n-1}, j that contains $I_{n,k}$. Now, fix *m* such that $2^{-m} < \delta$ and define $S_m = \{I_{m,k} : 0 \le k \le 2^m 1\}$. For p > m, define

$$S_p = \{I_{p,k}: \text{ the parent of } I_{n,k} \text{ is in } S_{p-1} \text{ and } |\Delta W(I_{n,k})| \le 0.2 \sqrt{2^{-n}} \}.$$

_

If the "branching process" $S_m, S_{m+1}, S_{m+2}...$ becomes extinct almost surely, then $\mathbf{P}(\mathcal{A}_{\delta}) = 0$.

3. Use Problem 15 to calculate the "offspring probabilities" in the branching process and hence conclude that extinction happens almost surely.

4

Dvoretsky proved that almost surely *W* does have Hölder-1/2 points with constant *C* if *C* is large enough but not if *C* is small enough. The above proof shows the latter for *C* < 0.1 but a second look will show that we can improve this a little. The proof here is a modification of the original idea of Paley, Wiener and Zygmund where they proved nowhere differentiability. Observe that the proof of Dvoretsky, Erdös and Kakutani does not say anything about Hölder-1/2 points.